Ex DAX 420-IR

explosive or toxic gas detector

CH₄ - C_xH_y - CO₂ ...

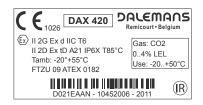
- Principle: INFRARED
- Connection: 3 wires
- Output signal: 4..20 mA
- ✓ ATEX marking: ⑤ II 2G Ex d IIC T6

The information contained in this documentation is non-contractual and subject to modifications.

DAX 420-IR **Ex**

The **DAX 420-IR** detector was designed to continuously measure the presence of various gases in the air.

Its operating principle, **infrared**, gives it its major benefits:


- very long lifetime,
- increased gas detection selectivity,
- immunity to poisons and,
- low maintenance cost.

By connecting it to a Dalemans unit or to any other instrument that can receive a **4..20 mA signal**, you will benefit from a **highly flexible installation**.

CHARACTERISTICS

Sensing head	Stainless steel 1.4404 (AISI 316L)		
Sintered metal filter	Stainless steel 1.4404 (AISI 316L)		
Junction box	Aluminium		
Dimensions / Weight	170 x 145 x 90 mm / 1400 g		
Sensor type	Infrared		
Output signal	420 mA current loop (3-wires)		
Setting	Zero and calibration by internal potentiometers		
Ассигасу	± 0.5 % full scale < 50 % LEL ± 1 % full scale > 50 % LEL		
Response time (T90)	< 30 sec.		
Lifetime	> 5 years		
Voltage	19 - 30 Vdc		
Consumption	Max 90 mA		
Storage temperature	-20 °C to +50 °C		
Operating conditions Temperature Ambient humidit	-20 °C to +50 °C y 0 - 95 % HR		
Cable cross sectional are	0.75 - 2.5 mm² (solid wires)		
Max. cable length	1000 m		
Loop resistance	50 - 750 ohms		
Casing ingress protection			
Cable entry	1 x M20 / 6,1 - 11,7 mm (other sizes on demand)		
Hazardous areas	Zone 1 or 2 (gas) Zone 21 or 22 (dust)		
Equipment gas grouping	IIC (methane, propane, ethylene, hydrogen, acetylene)		
Standards	EN 60079-0:2006 EN 60079-1:2007 EN 61241-0:2006 EN 61241-1:2004		
Approval (ATEX + IECEx)	 ⟨x⟩ II 2G Ex d IIC T6 ⟨x⟩ II 2D Ex tD A21 IP6X T85 °C 		
Certificate	FTZU 09 ATEX 0182		

ATEX certified, this detector is especially suitable for the industrial sector, whose applications are located in an explosive atmosphere or exposed to risks of emissions of toxic gases such as CO₂.

GASES CONCERNED

Measurement					
Formula	Density (air=1)	range (% L.E.L.)	L.E.L. (% vol.)		
C ₄ H ₁₀	2.05	0 - 100	1.40		
$C_{2}H_{6}O$	1.59	0 - 100	3.10		
CH ₄	0.55	0 - 100	4.40		
-	0.68	0 - 100	-		
C ₃ H ₈	1.56	0 - 100	1.70		
Measurement range (% vol.)					
	C ₄ H ₁₀ C ₂ H ₆ O CH ₄	Formula Density (air=1) C ₄ H ₁₀ 2.05 C ₂ H ₆ O 1.59 CH ₄ 0.55 - 0.68 C ₃ H ₈ 1.56	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Other gases and measurement ranges upon request.

INFRARED MEASUREMENT PRINCIPLE

The infrared cell functions according to the non-dispersive infrared (NDIR) principle. It is made up of a casing comprising:

- a diffusion membrane (1),
- a measurement chamber (2),
- an IR radiation source (3),
- an active sensor (4) and
- a reference sensor (4').

The gas that reaches the measurement chamber absorbs - within a very precise range of wavelengths - a part of the radiation emitted by the IR source.

The active sensor measures the remaining IR radiation and thereby determines the concentration of the gas present. The reference

concentration of the gas present. The reference sensor measures the IR radiation within a range of wavelengths that is not influenced by the incoming gas. Its signal serves to compensate any variation in IR radiation which is not due to absorption caused by the targeted gas, such as a variation in temperature, humidity level, etc.

This enables us to obtain an accurate and reliable measurement in all conditions.

DALEMANS GAS DETECTION SERVICES

2

Tel.: +32 (0)19 33 99 43 Fax: +32 (0)19 33 99 44 sales@dalemans.com Tel.: +32 (0)19 33 99 50 Fax: +32 (0)19 33 99 55 services@dalemans.com

rue Jules Mélotte 27 · B-4350 Remicourt (Belgium)